Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 25, 2026
- 
            Free, publicly-accessible full text available August 11, 2026
- 
            Free, publicly-accessible full text available May 28, 2026
- 
            Abstract Au nanoclusters often demonstrate useful optical properties such as visible/near‐infrared photoluminescence, in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8e−superatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide‐ and triphenylphosphine‐ligated Au11nanocluster, affording a cluster with a proposed molecular formula PtAu10(PPh3)7Br3. Electrochemical and spectroscopic analysis reveal an expansion of the HOMO–LUMO gap due to the Pt dopant, as well as relatively strong near‐infrared (NIR) photoluminescence which is atypical for an M11cluster (λmax= 700 nm, Φ = 1.88 %). The Pt dopant additionally boosted photostability; more than tenfold. Lastly, we demonstrate the application of the PtAu10cluster's NIR photoluminescence in the detection of the nitroaromatic compound 2,4‐dinitrotoluene, with a limit‐of‐detection of 9.52 μM (1.74 ppm). The notable ability of a single central Pt dopant to unlock photoluminescence in a non‐luminescent nanocluster highlights the advantages of heterometal doping in the tuning of both the optical and thermodynamic properties of Au nanoclusters.more » « lessFree, publicly-accessible full text available March 17, 2026
- 
            Free, publicly-accessible full text available January 13, 2026
- 
            Methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (methyl β-chitobioside), (IV), crystallizes from aqueous methanol at room temperature to give a structure (C17H30N2O22·CH3OH) containing conformational disorder in the exocyclic hydroxymethyl group of one of its βGlcNAc residues. As observed in other X-ray structures of disaccharides containing β-(1→4)O-glycosidic linkages, inter-residue hydrogen bonding between O3H of the βGlcNAc bearing the OCH3aglycone and O5 of the adjacent βGlcNAc is observed based on the 2.79 Å internuclear distance between the O atoms. The structure of (IV) was compared to that determined previously for 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranose (β-chitobiose), (III). TheO-glycosidic linkage torsion angles,phi(ϕ) andpsi(ψ), in (III) and (IV) differ by 6–8°. TheN-acetyl side chain conformation in (III) and (IV) shows some context dependence, with the C1—C2—N—Ccartorsion angle 10–15° smaller for the βGlcNAc residue involved in the internalO-glycosidic linkage. In (IV), conformational disorder is observed in the exocyclic hydroxymethyl (–CH2OH) group in the βGlcNAc residue bearing the OCH3aglycone, and a fitting of the electron density indicates an approximate 50:50 distribution of thegauche–gauche(gg) andgauche–trans(gt) conformers in the lattice. Similar behavior is not observed in (III), presumably due to the different packing structure in the vicinity of the –CH2OH substituent that affects its ability to hydrogen bond to proximal donors/acceptors. Unlike (IV), a re-examination of the previously reported electron density of (III) revealed conformational disorder in theN-acetyl side chain attached to the reducing-end βGlcNAc residue caused by rotation about the C2—N bond.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
